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ETH Zürich
kevita@ethz.ch

Abstract—This report explores the use of mutual information,
stereo calibration, and Fourier-Mellin Transforms to calibrate
an autonomous driving sensor suite which includes a monocular
frame-based camera, a monocular event-based camera, a MEMS
lidar, and a rotating radar. By leveraging the sensing modality
similarities, we formulate bi-sensor extrinsic calibration and joint
multi-sensor calibration. Nominal calibrations for radar-lidar are
completed using frequency space methods and event camera-
camera calibration results are performed traditional stereo-based
methods. Our experiments show how intrinsic and extrinsic
calibrations are highly sensitive to the quality of the calibration
target and the properties of the unstructured environment. We
also present the synergistic relationship between event cameras
and lidars as the event-driven sensors exhibit high dynamic
range that can capture the lidar laser returns outside the
wavelengths of visible light. Multiple optimizers were evaluated
in an information-based paradigm for their associated robustness
to noise and computational performance. We show that event-
driven sensors and lidars achieve a high degree of repeatability
regardless of optimizer and present a novel method for extrinsic
calibration between these two sensors.

The source code for camera-lidar calibration is available at
https://github.com/kev-in-ta/l2c-info-calib. The forked code for
the radar-lidar calibration is available at https://github.com/
kev-in-ta/radar to lidar calib.

I. INTRODUCTION

In recent years, the development of autonomous vehicles has
accelerated due to both academic research and industry efforts.
In these approaches, many sensing modalities have become
part of the standard autonomous driving suite, including cam-
eras, lidars, and radars [2], [3], [12], [20]. These sensors have
enabled significant advances in perception, localization, and
odometry. A key aspect of enabling these sensors is through
careful calibration of their intrinsic and extrinsic parameters
which details how each sensor is positioned relative to each
other and how the sensor signals are properly mapped into
a global frame. Figure 1 shows how calibration is important
for geometric alignment between an RGB frame-based camera
and a lidar sensor. Without calibration, the points are projected
incorrectly into the image space, likely leading to negative
consequences in downstream perception.

One type of sensor which has had limited exploration in the
realm of autonomous vehicle perception is the event camera,
an asynchronous sensor which extracts pixel-wise visual dif-
ferences as opposed to traditional cameras which capture entire
frames at regular intervals. Event cameras have the capacity
to augment the existing standard suite of sensors by providing

Fig. 1. Scene 34 (Top) Uncalibrated scene with lidar points projected using
seed values. (Bottom) Calibrated scene showing proper lidar point projection
alignment.

a dense scene representation, capturing fast moving objects at
higher frequencies, reducing data bandwidth in static scenes,
and exhibiting high dynamic range in low-light and adverse
conditions [6].

Many sensors are effectively intrinsically calibrated by the
vendor or manufacturer, reducing the total amount of cali-
bration required. However, some sensors still require intrinsic
calibration processes due to their customizability. Cameras can
have many different configurations affecting image quality,
including which lens is equipped and the adjustment to the
focus. This variability requires that the sensors are calibrated
intrinsically first before extrinsic geometric alignment. Stan-
dard methods for intrinsic calibration, such as those based
on the seminal work by Zhang [21], exist and are widely
implemented.

https://github.com/kev-in-ta/l2c-info-calib
https://github.com/kev-in-ta/radar_to_lidar_calib
https://github.com/kev-in-ta/radar_to_lidar_calib


Methods for sensor fusion aim to leverage the advantages
of different sensors for more robust perception, especially in
challenging environments and adverse conditions [20]. To fully
enable the effective use of multi-sensor set-ups, accurate cali-
bration is pivotal in ensuring that detected features and objects
are geometrically aligned. Due to variability in fabrication
of sensors and installation onto the robot platform, design
schematics and CAD models may not be accurate, especially
in the case of small extrinsic rotations.

Many sensors share sensing modalities in how they inter-
face with their surroundings or in how they represent their
surroundings. Typical cameras are sensitive to visible light
with wavelengths between 380-750 nm. Lidars typically emit
near infrared light with wavelengths between 800-1100 nm.
Event cameras exhibit high dynamic range around the typical
wavelengths of visible light and may be partially sensitive
to wavelengths outside the typical range of visible light. In
terms of representation, cameras project the 3D environment
to a dense 2D image that lacks depth information, while
Lidars capture the full 3D environment as a sparse 3D point
cloud with direct depth information. The radar used in this
experiment is a rotating sensor which captures a 2D slice of
the 3D environment with direct depth information.

Calibration methods can be categorized as structured cali-
bration or unstructured calibration. Structured calibration uses
defined physical markers that can be accurately located by
multiple sensors. For example, the use of chessboards for
cameras, planar targets for Lidars, and dihedral targets for
radars. Solving for extrinsics between sensors is accomplished
with targets that can be identified by multiple sensors, allowing
for relative calibration and alignment between sensors. As an
example of a multi-modal target, lidars can detect structured
edges from chessboard targets while cameras can detect the
chessboard pattern.

Unstructured calibration, sometimes referred to as automatic
calibration, foregoes easily identifiable targets for simpler
hardware set-ups and greater scene flexibility. Unstructured
calibration aims to identify shared features in scenes such as
edges [10] or planes. These methods look to extract features
identifiable in multiple sensors that are present in everyday
scenes or environments. Some of these methods aim to jointly
calibrate for geometric and temporal differences between sen-
sors, while other methods focus solely on geometric alignment.

Balancing the flexibility of unstructured calibration methods
and the geometric motivation of structured methods is an
important consideration when calibrating a suite of sensors. In
this report, we present a hybrid structured-unstructured method
for geometrically aligning a novel suite of sensors, which
include a monocular frame camera, a monocular event camera,
a MEMS lidar, and a spinning radar. Following intrinsic
calibration of the frame-based and event-based cameras, we
leverage an information-based unstructured calibration frame-
work for camera-lidar extrinsic calibration. We also present
target-based stereo calibration for event camera-camera align-
ment and a novel method to perform a fully-consistent event
camera-camera-lidar calibration in a semi-structured fashion.

Finally, we perform unstructured radar-lidar calibration using
frequency domain methods to complete the full extrinsic
calibration of the sensor suite.

II. RELATED WORK

A significant number of autonomous driving datasets have
developed over the last decade. In 2017, the Oxford RobotCar
team released a multimodal dataset including lidar, cameras,
and GNSS positional sensors under a variety of conditions
[12]. This dataset was expanded in 2020 to include a spinning
radar sensor [2]. DSEC, a stereo-based event camera dataset
was released in 2021 with lidar, stereo event cameras, and
stereo frame cameras [8]. In 2022, the Boreas dataset, a dataset
that captures many adverse conditions, was released with a
platform that included cameras, lidar, and radar [3]. In all of
these datasets, intrinsic and extrinsic calibration parameters
are necessary to handle the multi-modal data. In comparison
to the aforementioned datasets, the EFCL vehicle platform will
includes a MEMS lidar, a spinning radar, a monocular frame-
based camera, and a monocular event-based camera.

Intrinsic calibration of cameras is a well-established field
with widely available tools such as OpenCV [7] or Kalibr
[15]. These standard methods have ROS implementations and
are implemented in multiple programming languages allowing
for their ease of use in robotics and autonomous vehicle
development. Extension of these methods have recently been
made for event cameras where state-of-the-art event-to-video
reconstruction is used to reconstruct frames of chessboard
patterns for the purpose of intrinsic calibration [13]. Standard
methods can then be used to complete the intrinsic calibration
of the camera.

Many methods have been proposed for extrinsic calibration
between different sensors. Structured stereo calibration meth-
ods are common to calibrate in multi-camera set-ups and are
implemented in common libraries like OpenCV and Kalibr.
These tools identify planar targets with different potential
patterns including chessboard, ArUco, ChArUco, and AprilTag
patterns and performs PnP (pose) optimization to extrinsically
calibrate each sensor.

Lidar-camera methods have also been heavily explored
in research. These include unstructured mutual information
maximization schemes [16], [19], edge alignment methods, or
plane fitting methods. The first approach leverages the similar
sensitivity to wavelengths of light between cameras and lidars
to maximize their joint intensity mutual information. Kang and
Doh propose a probabilistic edge detection method to maxi-
mize the detected edge overlap between lidar scans and images
[10]. An et al. fused 3D-2D and 3D-3D point correspondences
with structured planar targets and unstructured environmental
objects for robust calibration [1]. In this work, we explore the
use of information frameworks for camera-lidar calibration.

Radar calibration research often explores structured methods
for calibration where specialized targets that maximize radar
returns are developed for accurate localization. Different meth-
ods of calibration targets have been explored for camera-radar



calibration [14], lidar-radar calibration [11], [17], and camera-
lidar-radar calibration [5]. Additional, there are efforts to
explore unstructured automatic lidar-radar calibration through
feature point registration between the two sensors [9].

Radar calibration, due to the coarse nature of radar signals,
are sometimes performed in SE(2) as opposed to SE(3).
This reduces the complexity down to a single rotation and
planar translation, and allows for 2D point registration in the
birds-eye-view (BEV) representation. This allows for certain
methods such as the Fourier-Mellin Transform (FMT) [18] for
point registration. Such methods were employed for 2D radar
odometry by Cen and Newman [4]. For radar-lidar calibration,
we adapt the calibration method used by the Boreas dataset
using FMT which incorporates feature extraction methods
developed by Cen and Newman.

Domhof et al. [5] also propose a framework for calibration
based on the connectivity of extrinsic calibrations. Extrinsic
calibration can be performed in a minimally-connected fashion
where there are no loops in the extrinsic relationship graphs
between sensors. They proposes a full-connected approach
to calibration where multiple sensors optimize for their joint
extrinsics. This approach ensures fully consistent calibration
by ensuring loop closure constraints.

This works differentiates itself from past work by exploring
extrinsic calibration of two emerging sensors for autonomous
systems, an event-based vision sensor and a MEMS lidar.
Additionally, we propose a fully-connected calibration scheme
between camera-camera-lidars system where stereo calibration
and mutual information optimization are used to build self-
consistent extrinsics.

III. METHODOLOGY

For camera intrinsic calibrations, we use the standard cam-
era pinhole and distortion model. the Pinhole model, K, is
described by the focal length (Fx, Fy) and principal point (Cx,
Cy) parameters as described in Eq. (1). The distortion model
is described by the 5 distortion parameters (k1, k2, p1, p2, k3)
where kn are the radial correction terms for barrel/pincushion
distortion and pn are the tangential correction terms for image
skew.

K =

Fx 0 Cx

0 Fy Cy

0 0 1

 (1)

For representation of our extrinsics calibration as homoge-
neous transformations, we collapse the transformations down
to a 6 parameter vector given by the translation parameters
(x, y, z) and the rotational vector (axis-angle) representation
(v1, v2, v3) where norm|| v⃗ || is the angle of rotation in radians.
Thus the full representation of the extrinsic transformations is
(x, y, z, v1, v2, v3). The translation parameters will be referred
to as the translation vector t. The expanded rotation into its
matrix form will be referred to as R.

Fig. 2. Sensor set-up on the EFCL data collection vehicle and the associated
default co-ordinate systems for each sensor.

A. Sensor Specifications

The EFCL vehicle platform is equipped with the Lucid Vi-
sion Lab’s Triton 5.4 MP Model frame-based camera, Proph-
esee’s Gen4.1 event-based vision sensor, the RoboSense RS-
LiDAR-M1 MEMS lidar, and Navtech’s CIR spinning radar
sensor. Table I gives an overview of the sensor information.

Table I. Overview of sensors on EFCL data collection vehicle.

Sensor Type Resolution HFoV VFoV Freq.

TRI054 frame 1920×1080 77◦ 48◦ 20.8 fps
Gen4.1 event 1280×720 64◦ 39◦ 50 Gev/s
RS-LiDAR-M1 lidar 600×175 120◦ 25◦ 15 Hz
CIRDEV radar 400 / sweep 360◦ 1.8◦ 4 Hz

The frame camera, event camera, and the MEMS lidar
exhibit a similar forward field of view, while the radar captures
the full 360◦ view around the vehicle. Figure 2 shows the
sensor set-up as mounted on the vehicle and the default co-
ordinate systems for each sensor.

B. Intrinsic Calibration

To calibrate the intrinsic parameters for the frame camera,
a number of chessboard images are captured. We ensure
a variety of positions and orientations are represented to
improve the calibration through varied pose constraints. These
images are then run through a calibration pipeline developed
with OpenCV to extract corner points which are then used
to calibrate the pinhole camera model parameters and the
standard distortion model.



Fig. 3. Scene 48 (Top) Accumulated events in the synthesized event camera
image. (Bottom) Cropped projected lidar scans into synthetic image space.

To calibrate the intrinsic parameters for the event camera,
the process described in [13] is used where events are recon-
structed into video frames where the chessboard patterns can
be extracted. The reconstructed frames can then be calibrated
with the pipeline described above for the standard camera
intrinsic parameters.

The RoboSense lidar and the Navtech radar are calibrated
by the manufacturers and left unmodified aside from mounting
to the vehicle platform and are simply taken at face value.

C. Event Camera-Lidar Optical Wavelength Detectability

Event-based cameras in static scenes will typically just
return noise due to a lack of motion. However, the Prophesee
Gen4.1 event camera exhibits higher sensitivity to wavelengths
of light outside the visible range, picking up the 905 nm
beams emitted by the RoboSense lidar. Consequently, the
event camera captures an ”illuminated” scene from the emitted
lidar beams. A synthetic image can be generated from the
accumulated events for the event camera which is shown in
Figure 3.

This synergistic property between the event camera and
lidar enables the generation of synthetic images for calibration
without the need of target or scene motion and without the
inclusion of temporal calibration. The decoupling of geometric
calibration from temporal calibration is of significant benefit in
calibration processes as it reduces the optimization space. An
additional advantage is the ability to simplify calibration set-
up design where external active elements or platform motion
may be required for full spatial-temporal calibration.

D. Camera-Lidar Extrinsic Calibration

As cameras and lidars operate at similar wavelengths, their
sensing modalities are also quite comparable. In particular, the
intensity of lidar returns are highly correlated to the grayscale
values found in an image. This correlation is exploited to
formulate a mutual information maximization problem to
calibrate the camera to the lidar.

1) Mutual Information Formulation: Mutual information
(MI) is a measure of statistical dependence between random
variables, indicating how much information one variable con-
tains regarding the other. MI can be described multiple ways,
but we take the same entropy based representation used in
[16]. Here the MI is defined in terms of the entropy of the
random variables X and Y , and their respective joint entropy
H(X,Y ).

MI(X,Y ) = H(X) + H(Y )− H(X,Y ) (2)

The entropy denotes a measure of uncertainty within one
variable, while the joint entropy represents the uncertainty
present in the event of a co-observation of X and Y . Note
that mutual information cannot be negative as the maximum
uncertainty the joint entropy can have is at most equivalent to
the uncertainty of variables X and Y in the situation where
X and Y are perfectly uncorrelated. The entropies of random
variable X , Y , and their joint entropy are described in Eq. (3,
4, 5).

H(X) = −
∑
x∈X

pX(x) log pX(x) (3)

H(Y ) = −
∑
y∈Y

pY (y) log pY (y) (4)

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log pXY (x, y) (5)

2) Probability Distribution Formulation: We use the same
formulation as Pandey et al. [16] for the approximation of
the probability distribution through the intensity and grayscale
histograms of the lidar scan and image respectively. Let
{Pi; i = 1, 2, ..., n} be the set of homogeneous 3D points
in the 3D scan. Then {Xi; i = 1, 2, ..., n} would be the set of
intensity returns for each point in the set P. The lidar points
can be projected into the image space through the extrinsics
(R, t) and the intrinsics K as shown in Eq. (6).

pi = K[R|t]Pi (6)

The location of the projected point are then used to acquire
the associate grayscale value in the image:

Yk = I(pi) (7)

From the accumulated points, a histogram is generated from
the discretized intensity values and total points, n, that lie
within the valid image region as described in Eq. (8).



Fig. 4. Smoothed joint histogram as the approximate joint probability
distribution between the image and lidar intensities.

p̂(X = k) =
xk

n
, k ∈ [0, 255] (8)

The raw histograms, however, are quite noisy and the opti-
mization requires a smooth function to find suitable solutions.
To address this issue, we smooth our histograms using Gaus-
sian blurring convolutions, a method that is nearly equivalent
to kernel density estimation (KDE) in the case where the
histograms bins are equally spaced and the points already
discretized. Gaussian blurring runs orders of magnitude faster
than true KDE algorithms. In the 1D case these are nearly
equivalent aside from the marginal difference in finite and
infinite support between the two methods. In the 2D case these
methods are also nearly equivalent, except for the marginal
covariance terms and the same support issues present in
the 1D case. We use the same kernel smoothing parameters
through Silverman’s rule-of-thumb for the 1D case to ensure
the probability distributions are consistent. Eq. (9) shows the
kernel density approximation for the 2D joint probability.

p̂(X = k) =
1

n

n∑
i=1

KΩ

([
X
Y

]
−
[
Xi

Yi

])
(9)

Ω = f × n−1/5

[
σx 0
0 σy

]
f =

(
(d+ 2)

4

) −1
d+4

Where Ω is the KDE smoothing parameter (standard devi-
ation of the Gaussian blur), f is Silverman’s factor, n is the
total number of points, and d = 1 for the one-dimensional
case of Silverman’s rule-of-thumb. Figure 4 shows the joint
probability distribution of the lidar intensities and the image
grayscale values.

3) Optimization: With the MI criteria defined and our
approximations of the probability distributions, we formulate
an optimization problem as follows:

Fig. 5. R - radar; L - lidar; C - frame camera; E - event camera. Single solid
line - MI-based optimization; Double solid line - FMT point registration;
Double dotted line - stereo calibration. (Left) Minimally-connected pose
estimation. (Right) Fully-connected pose estimation between L/C/E.

Θ̂ = argmax
Θ

MI(X,Y ; Θ) (10)

where Θ = (x, y, z, v1, v2, v3), when parameterized by the
axis-angle form, and is maximized at the correct extrinsic
parameters. Effective optimization of this function is heavily
assisted by smooth convex functions. The KDE helps smooth
out the optimization process, but convexity is not ensured, in
part due to the choice of angle parameterization.

The optimization process is accomplished with the standard
optimizers available in SciPy. These optimizers include robust
non-gradient methods such as ”Nelder-Mead” or the ”Powell”
shooting method, as well as gradient based methods like
the ”Broyden-Fletcher-Goldfarb-Shanno” (BFGS) algorithm,
conjugate gradient methods, or ”Sequential Least SQuares
Programming” (SLSQP).

E. Event Camera-Camera Extrinsic Calibration

To calibrate the monocular frame camera to the event
camera, we use established stereo calibration methods, such
as those implemented in OpenCV. Here, we can use co-
occurrence of chessboards in the field-of-view (FoV) to cali-
brate the relative positions of the two cameras by optimizing
the reprojection error.

F. Camera-Lidar Calibration with Stereo Constraints

The above methods optimize the calibration between two
sensors without regard for the consistency of extrinsic calibra-
tion between all three sensors. Calibration can be performed in
a minimally-connected or fully-connected manner [5]. Figure
5 shows the two possible configurations. In our procedure,
camera-camera calibration is performed using stereo calibra-
tion, camera-lidar calibration is performed using intensity
mutual information maximization, and radar-lidar is performed
using frequency domain FMT for point registration.

Extending the previous methods, we utilize the stereo cal-
ibration and optimize for both the mutual information in the
RGB camera-lidar and event camera-lidar calibration whereby
the optimization ensures the stereo constraint is satisfied. The
optimization objective function is shown in Eq. (11).

F(X,Y1, Y2) = MI(X,Y1) + αMI(X,Y2) (11)



Where Y1 is the RGB camera image, Y2 is the event camera
image, and α is a weighting factor that controls which image
is prioritized in the optimization. In our experiments, we use
equal weighting with α = 1.

G. Radar-Lidar Extrinsic Calibration

Both lidar and radar sensors directly acquire range infor-
mation. The sensing modalities between radar and imaging
in unstructured scenes is fundamentally quite different, and
is thus not unified with the methods described above. This is
noted in the connectivity graph shown in Figure 5 where the
radar is shown to be solely connected to the lidar.

Consequently, we only exploit the inherent structure simi-
larity, direct depth measurement, of the lidar and radar returns
to perform point registration. Specifically, we perform a SE(2)
calibration in the frequency domain using FMT. This method
was employed in [3] for the Boreas dataset and we employ
those methods with minor changes to suit the data format and
configuration available to the EFCL vehicle platform.

A pivotal aspect of this method is key-point extraction
of the noisy radar signal to get a sparse 2D point map for
registration. The feature extraction follows from [4] which
detects landmark objects from the power-range spectrum and
was originally used for the purpose of radar odometry.

This method is primarily useful in calibrating the relative
yaw rotations between the radar and lidar. Due to the coarse
nature of the radar returns (azimuth resolution of 0.9◦ and
range resolution of 4.4 cm), the positional calibration from
this method is an order of magnitude less precise than hand
measurements of the installed sensors on the vehicle. As a
result, the measured positional seed values for the as-built
radar configuration will be used as the extrinsics parameters
for calibration.

IV. EXPERIMENTAL RESULTS

To complete full extrinsic calibration, 93 scenes were cap-
tured in an underground parking lot at the ETH Zürich Zen-
trum campus. These scenes are divided roughly into two main
subgroups, the unstructured garage scenes and the stationary
”structured” scenes where a chessboard in different positions is
visible in the FoV. Radar returns were only captured in the last
two sub-datasets (Chessboard #3 Garage #2). A breakdown
of these calibration scenes is shown in Table II.

Table II. Calibration datasets.

Calibration Set Scenes RADAR

Chessboard #1 1 - 10 ✗
Garage #1 11 - 35 ✗
Chessboard #2 36 - 40 ✗
Whiteboard #1 41 - 45 ✗
Chessboard #3 46 - 65 ✓
Garage #2 66 - 93 ✓

As all sensors are calibrated to the lidar, we present seed
calibration values with respect to the lidar coordinate frame.
Table III shows the initial seed calibration parameterized with

ZYX Euler angles for interpretability. In the lidar coordinate
frame, the forward direction is the x-axis, to the left is the
y-axis, and the upward direction is the z-axis.

Table III. Extrinsic seed calibrations relative to lidar.

Sensor x (m) y (m) z (m) α(◦) β(◦) γ(◦)

TRI054 -0.050 -0.106 0.00 90 0 90
Gen4.1 -0.050 -0.188 0.00 90 0 90
CIRDEV -0.400 -0.150 0.20 0 0 0

Multiple optimizer choices were tested to evaluate their per-
formance in terms of robustness, accuracy, and computational
speed. The principal choices were between non-gradient based
methods like ”Nelder-Mead” or the ”Powell” shooting method
compared to numeric gradient based methods like ”L-BFGS-
B” and ”SLSQP”.

When using a sufficient number of scenes the optimizers
converge to an optimal solution in the parameter space. Figure
6 shows how the 1D variations across each axes of translation
rotation shows convergence to a local optima for the event
camera-lidar calibration.

A. Intrinsic Calibration Results

Prior to extrinsic calibration, intrinsic calibration is required
as we need to determine the correct mapping from 3D
space into the 2D image. This mapping is critical for the
point projection step in extrinsic calibration and in future
sensor fusion. Additionally, the dataset will also provide recti-
linearized images, or undistorted images based on the intrinsic
calibration, to simplify the image loading and training of
deep learning perception models. For the Triton 5.4 MP
camera, 326 valid images were captured for calibration with
an 9x7 checkerboard grid (8x6 valid points). For the Prophesee
Gen4.1, image reconstruction was performed using E2VID, a
tool that converts events into image frames. These frames can
them be used through any standard camera intrinsic calibration
process. 558 valid images were used for the event camera
calibration.

The two sensors were calibrated using the OpenCV imple-
mentation of camera calibration. Table IV shows the calculated
camera model properties while Table V shows the distortion
parameters after calibration.

Table IV. Camera intrinsic calibration pinhole results.

Camera RP Error Fx Fy Cx Cy

TRI054 0.536 1200.72 1201.14 939.19 538.03
Gen4.1 0.904 1027.79 1029.03 615.96 342.07

The reprojection errors for the intrinsic calibrations are quite
high for calibration, with typical reprojection error targets
lying between 0.1-0.3 pixels. There are many possible sources
as for why the reprojection error is high. For example, many
images exhibit high degrees of motion blur or are generally
quite dark in the event-image reconstruction. This effect could



Fig. 6. Normalized cost function optima when exploring the cost landscape around the found optimal calibration parameters.

Table V. Camera intrinsic calibration distortion results.

Camera K1 K2 P1 P2 K3

TRI054 -0.3553 0.1638 0.0002 0.0001 -0.0414
Gen4.1 -0.4408 0.2570 0.0012 0.0003 -0.0903

Fig. 7. Images showing the poor quality of certain calibration images for
RGB (left) and event (right) cameras.

be a result of poorly illuminated environments that increase the
exposure time or gain compensation, exacerbating the motion
blurring issues. Figure 7 shows examples of poor quality
images that exhibit high reprojection error that were used in
the calibration process.

Other potential sources of error include the use of non-
flat or warped patterns on the target. These could result from
the pattern being printed on a non-flat surface, blurring issues
due to lighting or lens focus, or the printing and application
process of the pattern causing poor orthogonality or uniformity
in the final pattern. As the target used in this initial calibration
process was a printed A4-size paper target taped onto the
side of an old computer case, the integrity of the pattern is
potentially suspect.

To address the previous point regarding poor target quality,
we generated new calibration results using a commercial
metrology-grade chessboard target from https://calib.io/. The
chessboard is an 800 mm x 600 mm target with a 12x9 (11x8
valid points) chessboard pattern. These targets are constructed

from aluminum composite materials that exhibit a high degree
of environmental stability. The tolerances on these targets are
specified to be within 0.1mm + 0.3mm/m (at 20◦C). While
the chessboard target was replaced, the lighting conditions
were similarly poor. We see significant improvements to the
reprojection error for both the RGB camera and event camera
with this target. The RGB camera calibration used 80 images
while the event camera calibration used 71 images. Table VI
shows the re-calibrated camera model properties while Table
VII shows the re-calibrated distortion parameters.

Table VI. Re-calibrated camera intrinsic calibration pinhole results.

Camera RP Error Fx Fy Cx Cy

TRI054 0.263 1215.16 1215.58 931.47 541.55
Gen4.1 0.667 1043.98 1044.39 620.35 343.76

Table VII. Re-calibrated camera intrinsic calibration distortion results.

Camera K1 K2 P1 P2 K3

TRI054 -0.3657 0.1945 -0.0004 0.0001 -0.0638
Gen4.1 -0.4558 0.2994 0.0001 0.0001 -0.1391

B. Camera-Lidar Mutual Information Formulation

With accurate intrinsic calibrations, we can complete ex-
trinsic calibration with both cameras using the MI optimiza-
tion framework. For well-posed optimization, the objective
function is ideally smooth and convex to allow for numeric
gradient or shooting methods to converge towards a global
optimum. As described in the methodology section, we used
smoothed intensity distributions as proxies for our probability
distributions. When we explore the cost landscape around the
optimal calibration results, we find the solution lies within
a local optima as expected for the MI optimization process.

https://calib.io/


Fig. 8. Cost surface with 28 scans in the Garage #2 subset displaying a
clear optima when varying the x and y position from the optimally found
parameters.

Figure 8 shows the clear local optima when we vary two of
the positional axes.

C. Camera-Lidar Calibration

As mentioned in the methodology, we use the axis-angle
parameterization to avoid singularity configurations in Euler
parameterization where two parameters may not be fully
independent. This parameter independence leads to a more
convex optimization space and improves the repeatability of
the calibration results.

1) Noise-free Full Calibration: We present the extrinsic
parameters when calibrating across all 93 scenes with the seed
values determined from the CAD model. We find that the
unbounded methods, ”CG” and ”BFGS,” deviate wildly from
the seed calibrations for the RGB camera-lidar calibration
and their results have been omitted. For the RGB frame
camera, we find that the positional calibration results are
within 5 to 10 mm, when we exclude the ”Nelder-Mead”
results, which have poor positional calibration performance.
The rotation components are within 0.002 radians or 0.1◦. The
event camera-lidar calibration achieves more similar results
with positional parameters varying by 2 to 5 mm (again
excluding ”Nelder-Mead”) and rotational parameters within
0.001 radians or 0.05◦. A full summary of these calibration
results can be found in Table VIII.

2) Optimizer and Scene Robustness: The axis-angle repre-
sentations appears to work reasonably well with most of the
optimizers. To ensure robustness, however, we perform two
main experiments using the axis-angle representation. We test
each optimizer with 40 repeated runs of 40 randomly sub-
selected scenes for these two experiments. The first experiment
uses the CAD model seed values for initial parameters for cal-
ibration whereas the second experiment induces an additional

Table VIII. Extrinsic calibration results for transforming lidar points into the
respective camera frames with different optimizers. NM - ”Nelder-Mead”,

Po = ”Powell”, BF - ”BFGS”, LB - ”L-BFGS-B”, CG - conjugate-gradient,
SL - ”SLSQP”.

Camera x (m) y (m) z (m) v1 v2 v3

TRI054 NM 0.1063 0.0000 -0.0512 1.223 -1.210 1.187
TRI054 Po 0.1009 0.0019 -0.0163 1.224 -1.208 1.188
TRI054 LB 0.1042 0.0069 -0.0216 1.225 -1.210 1.187
TRI054 SL 0.1053 0.0106 -0.0210 1.225 -1.210 1.187

Gen4.1 NM 0.1851 0.0001 -0.0508 1.204 -1.207 1.214
Gen4.1 Po 0.1835 -0.0028 -0.0335 1.203 -1.207 1.214
Gen4.1 BF 0.1849 -0.0041 -0.0317 1.203 -1.207 1.214
Gen4.1 LB 0.1852 -0.0034 -0.0317 1.203 -1.207 1.214
Gen4.1 CG 0.1829 -0.0044 -0.0326 1.204 -1.207 1.214
Gen4.1 SL 0.1878 -0.0023 -0.0340 1.203 -1.208 1.214

stochastic noise in the range of ±5 cm or ±0.05 rad to each
parameter.

In the RGB camera-lidar calibration, we find the conjugate-
gradient and default ”BFGS” algorithms, two unbounded
methods, often perform poorly in all parameters in the noise-
less optimization and converge to parameters far from the
true solution. The ”Nelder-Mead” simplex refinement method
works poorly for optimizing translation parameters, often
staying close to the seed parameters. The ”Powell” shooting
method performs well in optimizing to repeatable values re-
gardless of initialization, but tends to have the highest run-time
for convergence.The ”L-BFGS-B” algorithm and the ”SLSQP”
method both exhibit more repeatable results in the noiseless
and noise-induced experiments. The ”SLSQP” results in more
stable parameterization in the noiseless experiment, but can
diverge from the repeated results in the noise-induced experi-
ment.

Conversely, we find that the event camera-lidar calibration
exhibits a high degree of stability and repeatability with a wide
range of optimizers. The exception in this case is the ”Nelder-
Mead” method which exhibits the same issues regarding the
convergence of translation parameters where it tends to remain
close to the initial seed values. Figure 9 shows the parameter
optimization for the event camera for both the noiseless and
noise-induced experiments.

In terms of calibration repeatability, we analyzed the results
of the noise-free experiments with the different optimizers.
Specifically, we calculate the mean result and the associated
standard deviation of the 40 experiments where 40 scenes are
sub-sampled from the 93 total scenes to look at the process
robustness. We have excluded the ”CG” and ”BFGS” methods,
two unbounded methods, for the RGB camera due to their
wild divergence from the seed calibration skewing the results
heavily.

The RGB results show good repeatability in translation
with standard deviations between 0.3-0.9 cm, excluding the
”Nelder-Mead” results which we have previously shown to
have poor positional optimization. The rotational standard
deviations tend to be below 0.002 radians or within 0.1◦. We



Fig. 9. Optimized extrinsic parameters for the event camera-lidar calibration under the axis-angle representation.

find that the event camera-lidar calibration exhibits excellent
repeatability with translational standard deviations typically
below 0.3 cm and rotational standard deviations around 0.0005
radians or around 0.03◦. Table IX summarizes the full repeata-
bility results.

D. MI Optimization Computational Analysis

A key consideration for calibration at-scale is the computa-
tional load of calibration methods. We explore the difference
in computational speed depending on the optimizer choice and
the number of scenes used in calibration.

1) Optimizer Choice: Between the six evaluated optimiza-
tion methods, we explore their computational performance
under similar conditions. We ran each optimizer 40 times with
40 randomly selected scenes used in the optimization process.
”SLSQP” runs the fastest of the six, followed by ”Nelder-
Mead”, ”L-BFGS-B”, ”BFGS”, ”CG”, and ”Powell” respec-
tively. Many of the optimizers show high degrees of variance
based on the randomized initial seeds for these experiments.
The ”Powell” shooting method, in particular, shows significant
run-time variation for its optimization. Figure 10 shows the
comparison between different optimizers.

These runs were completed on a computational cluster
equipped with Intel® Xeon® Processor E5 CPUs with clock-
speeds ranging from 2.1 to 2.7 GHz. With a 40 scene calibra-
tions taking on average ~100 seconds with ”SLSQP” optimiza-
tion and ~300 seconds with ”L-BFGS-B” optimization, these
computational times are within reasonable limits for acquiring
accurate calibration.

2) Time Complexity: The optimization process was also
partially completed locally on a laptop (Dell XPS 13 9350)
with an Intel® Core™ i7-6560U CPU@2.20GHz x4 and 8
GB RAM. Figure 11 graphs the optimization computational

Fig. 10. Comparison of the average compute time between different optimiz-
ers.

Fig. 11. Compute time showing an approximately linear O(n) scaling with
of scenes.

time for the ”Nelder-Mead” method using simplex refinement
as a function of the number of processed scenes.

The function to acquire the mutual information scales



Table IX. Extrinsic calibration mean parameters in the noise-free calibration experiments with the standard deviations reported in brackets. Angles reported
in radians. NM - ”Nelder-Mead”, Po = ”Powell”, BF - ”BFGS”, LB - ”L-BFGS-B”, CG - conjugate-gradient, SL - ”SLSQP”.

Camera x (m) y (m) z (m) v1(rad) v2(rad) v3(rad)

TRI054 NM 0.10831 (0.00083) 0.00002 (0.00005) -0.05057 (0.00058) 1.22333 (0.00084) -1.20969 (0.00103) 1.18790 (0.00120)
TRI054 Po 0.10284 (0.00271) 0.00682 (0.00477) -0.01617 (0.00393) 1.22470 (0.00089) -1.20932 (0.00165) 1.18711 (0.00175)
TRI054 LB 0.10164 (0.00599) 0.00842 (0.00511) -0.02761 (0.00861) 1.22457 (0.00110) -1.21005 (0.00143) 1.18587 (0.00213)
TRI054 SL 0.10211 (0.00328) 0.00748 (0.00360) -0.01686 (0.00602) 1.22439 (0.00065) -1.20963 (0.00136) 1.18619 (0.00170)

Gen4.1 NM 0.18592 (0.00259) 0.00021 (0.00033) -0.04757 (0.00718) 1.20391 (0.00052) -1.20760 (0.00051) 1.21410 (0.00045)
Gen4.1 Po 0.18678 (0.00334) -0.00092 (0.00273) -0.03040 (0.00242) 1.20321 (0.00056) -1.20790 (0.00077) 1.21385 (0.00072)
Gen4.1 BF 0.18607 (0.00279) -0.00236 (0.00267) -0.03171 (0.00298) 1.20351 (0.00064) -1.20739 (0.00045) 1.21430 (0.00044)
Gen4.1 LB 0.18678 (0.00228) -0.00228 (0.00232) -0.03509 (0.00426) 1.20352 (0.00054) -1.20739 (0.00050) 1.21447 (0.00044)
Gen4.1 CG 0.18512 (0.00263) -0.00238 (0.00298) -0.03862 (0.00579) 1.20346 (0.00065) -1.20736 (0.00057) 1.21403 (0.00056)
Gen4.1 SL 0.18744 (0.00280) -0.00206 (0.00243) -0.03130 (0.00240) 1.20336 (0.00054) -1.20763 (0.00054) 1.21435 (0.00050)

linearly with the number of projections of the lidar scan
into an image and the subsequent calculation of the intensity
histogram counts for each projected point, achieving an O(n)
scaling with respect to the number of scenes. Knowing the
linear scaling of the optimization process based on the number
of scenes, informed trade-offs can be made depending on the
speed-accuracy requirements of the calibration process.

E. Stereo Calibration

Several scenes in the ”Chessboard #1” and ”Chessboard #3”
contain co-visible chessboard images between the RGB and
event camera. The 3D pose can be extracted from these chess-
boards and their extrinsic calibrations determined from the co-
visible 3D points. This generates an independent calibration
that can be used to compared to the camera-lidar approach in
the previous section.

In the event camera image reconstruction, the illumination
effect is driven by the lidar laser returns. As the MEMS lidar
has a vertical FoV of 25◦, only the middle band of the event
camera is illuminated, as the recti-linearized event camera
frame has a FoV of 39◦. Consequently, we cannot place the
chessboard pattern for calibration in an arbitrary position, but
in positions that are within the full FoV of the RGB camera
and the applicable FoV of the event camera.

Stereo calibration results are compared to the MI calibration,
generated from using all the available scenes and optimized
with the ”L-BFGS-B” optimizer, in Table X. We see that
the calibration results differ by approximately 5 mm in the
horizontal and depth direction. The calibration result differs
by approximately 15 mm in the y direction, potentially due
to the limited vertical range in the camera resolution and in
the positioning of the target. The absolute angular difference
between the two configurations, as calculated from Eq. (12),
is 0.18◦.

θ = arccos
trR− 1

2
, where R = R1R

T
2 (12)

The calibration process reports a reprojection error of

0.60071. This reprojection error is quite high compared to
typical target values for reprojection error. As described in
the intrinsic calibration process, the same issues are potential
causes for the high reprojection error including poor pattern
integrity and poor lens focus leading to blurring. We also
compare the reprojection error calculated from taking the pose
estimate from only the RGB camera frame and reprojecting
with the stereo and the MI-based extrinsic parameters into the
event camera space. We find that this process retrieves an error
of 1.03 pixels for the stereo calibration and 1.47 pixels for the
MI-based calibration.

Table X. Extrinsic calibration results between the RGB and event camera
and the associated reprojection error from the RGB image to the event

image.

Method RGB→ E (px) x (m) y (m) z (m) |v| (rad)

Stereo 1.0294 0.0745 0.0033 -0.0177 0.0257
MI 1.4746 0.0807 -0.0104 -0.0120 0.0286

F. Stereo-constrained Camera-Lidar Calibration

As shown in the previous section, the stereo calibration
and the individual camera-lidar are similar, but not fully
consistent. To address this consistency issue, we perform
a joint optimization of both camera-lidar calibrations while
maintaining the stereo calibration as a constraint. The results
in the calibrations for the RGB camera are found in Table XI.

G. Radar-Lidar Calibration

Radar calibration is the final step for the full set of extrinsic
calibrations. The spinning radar can capture direct depth
information and is known to be more robust to inclement
weather conditions.

The radar-lidar calibration process uses the ”Garage #2”
sub-dataset which contained varied unstructured scenes. The
sub-dataset contains 28 scene pairs captured in an indoor
environment. The indoor environment poses a number of

1This value is calculated from the optimized pose that minimizes the joint
reprojection error from both cameras as opposed to a pose estimate generated
from just one camera.



Table XI. Extrinsic calibration results for joint optimization of both cameras.
Angles reported in radians. NM - ”Nelder-Mead”, Po = ”Powell”, BF -
”BFGS”, LB - ”L-BFGS-B”, CG - conjugate-gradient, SL - ”SLSQP”.

Camera x (m) y (m) z (m) v1 v2 v3

TRI054 NM 0.1083 0.0001 -0.0494 1.219 -1.214 1.196
TRI054 Po 0.1201 -0.0010 -0.0058 1.218 -1.216 1.197
TRI054 BF 0.1187 -0.0014 -0.0045 1.218 -1.216 1.197
TRI054 LB 0.1223 -0.0008 -0.0086 1.217 -1.216 1.197
TRI054 CG 0.1208 -0.0005 -0.0010 1.218 -1.216 1.197
TRI054 SL 0.1219 -0.0003 -0.0038 1.218 -1.216 1.197

Fig. 12. Bird’s-eye-view (BEV) of the sliced lidar returns and the filtered
radar returns. Lidar returns are in red, radar returns in blue, and co-observed
points in green.

challenges. Indoor scenes tend to exhibit high degrees of noise
in the radar returns due to the returns that rebound off of the
walls and ceilings of the enclosed space. To account for the
high degree of noise in the scene, we set the feature detector
thresholds higher than for outdoor scenes to try and isolate
true landmarks or key-points from the noise. Figure 12 shows
the overhead view of the result of the radar-lidar calibration.

The calibration process determines the yaw rotation of
the lidar to the radar frame to be 0.868±0.293◦. We also
conducted repeatability studies where we perform 300 trials
where we randomly sub-select calibration from 5 scenes, 10
scenes, and 15 scenes. We find that the calibrations achieve
0.876±0.116◦, 0.864±0.073◦, and 0.870±0.054◦ respectively
in these repeated trials. With 10 scenes, we see repeatability
of results within 0.1◦, which is in line with what [3] found in
their calibrations with 10 scenes.

For the positional calibration values, we measured these val-
ues in both the CAD model and in the as-built configuration.
The values of both measurements are listed in Table XII.

V. DISCUSSION

Calibrating an autonomous vehicle sensor suite requires
many considerations due to the different sensing modalities
unique to each sensor. Due to the sensor resolution, there may

Table XII. Positions of the radar relative to the lidar in the CAD model and
as measured.

Camera x (m) y (m) z (m)

CAD -0.40 0.15 0.20
As-built Measurement -0.38 0.17 0.24

be practical limits to the accuracy of achievable calibration.
Regardless, accurate calibration remains a pivotal aspect for
multi-modal perception in robotics and in other autonomous
systems. The effect of poor calibration can be seen in the pre-
calibrated images seen in Figure 13.

For camera-lidar calibration, mutual information provides a
well-motivated approach for calibration in loosely structured
scenes. This method is applicable to scenes without targets, but
may also exploit standard targets like chessboards to extend
calibration with stereo methods. When multiple calibration
methods are employed, we can leverage these different calibra-
tion methods to build confidence in calibration results within
the multi-sensor framework.

A. Event Camera-Lidar Geometric Calibration

From the different calibration methods, we found that
event camera-lidar calibration to express the greatest stability
and accuracy. MI approaches are particularly applicable in
the calibration of event cameras and lidars where the event
camera’s high dynamic range can directly capture the lidar
laser returns, resulting in a direct correlation between the
illumination source and the returned signal for both sensors.
Additionally, this approach allows for the system to decouple
the geometric and temporal calibration between these two
sensors, permitting the calibration of an event camera without
complicated motion triggering of the event camera to detect
edges or other features for alignment.

B. Stereo Constraint Extensions

The use of stereo calibration as a hard constraint to jointly
optimize multi-camera-lidar calibration is a simple extension
of the optimization without introducing additional optimizable
parameters. However, a joint objective function which incor-
porates both the MI score and the stereo reprojection error
would allow for the calibration process to perform a more
complete optimization of all parameters. This joint function
could potentially be formulated from the a weighted sum of
the RGB-lidar MI score, the event-lidar MI score, and the
reprojection error for the stereo calibration. Another alternative
would be to use the stereo constraint as a soft penalty which
penalizes the calibration of the camera-lidar systems if their
result deviates too far from the stereo calibration.

C. Impact of Intrinsic Calibration

All calibration of the camera systems inherently rely on
the accuracy of the intrinsic calibration results. The intrinsic
calibration has a significant impact on both stereo calibration,
where typically the intrinsic values are fixed to reduce the



Fig. 13. Scene 47 (Top 4) and scene 77 (Bottom 4) showing RGB frame camera-lidar and event camera-lidar alignment before and after calibration. (Left)
Pre-calibrated lidar point projections. (Right) Calibrated lidar point projections.



optimization space, and the camera-lidar calibrations where
the intrinsics affect how points are projected into the 2D
image. If the intrinsic calibration results are inaccurate, then
the extrinsics will also converge to inaccurate results.

Consequently, the retrieval of accurate intrinsics is funda-
mental to accurate extrinsic calibration. To ensure accurate
intrinsics, the quality of the hardware set-up is of significant
importance. We note the significant improvements to the
reprojection error when we transition from the initial target
to the commercial target. As such, intrinsic calibration should
carefully considered when calibrating sensors for the purpose
of autonomous driving and in generalized robotics.

D. Optimizer Choice
In our experiments, we found that the ”L-BFGS-B” al-

gorithm typically had the best stability across optimizers in
terms of result performance. This optimizer tended to be
slower, however, than the ”Nelder-Mead” simplex algorithm
or the ”SLSQP” algorithm. ”SLSQP” offered a much faster
optimization and led to stable results when seed calibrations
were close to the true calibrations. ”SLSQP,” tended to be less
robust to random seed noise in the calibration initialization.

Additionally, these optimizers were not fine-tuned to the
process of calibration and their performance could be im-
proved in both stability and computation speed. Extensive
testing of termination criteria, bounding, step size, and other
parameters for each optimizer was not performed. For ex-
ample, the optimization used 3-step numeric differences for
gradient calculations, which tends to be slower than 2-step
numeric differences but is potentially more stable. Optimizer
tuning could improve both the optimization time and result
repeatability across different scene selections.

E. Radar-Lidar Calibration
The radar-lidar optimization was performed in an indoor

environment with extensive noise due to the radar returns from
the ceiling and ground elements. Repeating these results in an
outdoor setting would limit the noise in the radar scans and
and allow for greater confidence in the radar-lidar calibration.
Additionally, the lidar is different from most other lidars
used in perception datasets as it does not exhibit a full 360◦

horizontal FoV.

VI. CONCLUSION

In this report, we explore the complete calibration of four
sensors with unique sensing modalities in the use of an
autonomous driving dataset. We showcase an MI optimization-
based calibration process for calibrating camera-lidar systems
and a method extension to the stereo-lidar calibration case.
Additionally, we show that lidars and event cameras have
synergistic compatibility for calibration, enabling image re-
construction from events triggered by the lidar lasers. The
calibration process incorporates both information from the
unstructured scene and potentially from structured targets,
allowing for calibration flexibility. We also showcase a radar-
lidar calibration performed using frequency space information
for yaw rotation calibration.

REFERENCES

[1] P. An, T. Ma, K. Yu, B. Fang, J. Zhang, W. Fu, and J. Ma. Geometric
calibration for LiDAR-camera system fusing 3D-2D and 3D-3D point
correspondences. Optics Express, 28(2):2122, 2020.

[2] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner. The Oxford
Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar
Dataset. Proceedings - IEEE International Conference on Robotics and
Automation, pages 6433–6438, 2020.

[3] K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian, W.-K.
Tseng, A. Lambert, K. Y. K. Leung, A. P. Schoellig, and T. D. Barfoot.
Boreas: A Multi-Season Autonomous Driving Dataset. arXiv, 2022.

[4] S. H. Cen and P. Newman. Precise Ego-Motion Estimation with
Millimeter-Wave Radar under Diverse and Challenging Conditions. Pro-
ceedings - IEEE International Conference on Robotics and Automation,
pages 6045–6052, 2018.

[5] J. Domhof, J. F. Kooij, and D. M. Gavrila. A Joint Extrinsic Calibration
Tool for Radar, Camera and Lidar. IEEE Transactions on Intelligent
Vehicles, 6(3):571–582, 2021.

[6] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, and D. Scara-
muzza. Event-Based Vision: A Survey. IEEE transactions on pattern
analysis and machine intelligence, 44(1):154–180, 2022.

[7] B. Gary. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
25(2236121):120–123, 2008.

[8] M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza. DSEC: A
Stereo Event Camera Dataset for Driving Scenarios. IEEE Robotics
and Automation Letters, 6(3):4947–4954, 2021.

[9] L. Heng. Automatic targetless extrinsic calibration of multiple 3D
LiDARs and radars. IEEE International Conference on Intelligent
Robots and Systems, pages 10669–10675, 2020.

[10] J. Kang and N. L. Doh. Automatic targetless camera–LIDAR calibration
by aligning edge with Gaussian mixture model. Journal of Field
Robotics, 37(1):158–179, 2020.

[11] C. L. Lee, Y. H. Hsueh, C. C. Wang, and W. C. Lin. Extrinsic and
Temporal Calibration of Automotive Radar and 3D LiDAR. IEEE
International Conference on Intelligent Robots and Systems, pages
9976–9983, 2020.

[12] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year, 1000
km: The Oxford RobotCar dataset. International Journal of Robotics
Research, 36(1):3–15, 1 2017.

[13] M. Muglikar, M. Gehrig, D. Gehrig, and D. Scaramuzza. How to
calibrate your event camera. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, pages 1403–1409,
2021.

[14] J. Oh, K. S. Kim, M. Park, and S. Kim. A Comparative Study
on Camera-Radar Calibration Methods. In 2018 15th International
Conference on Control, Automation, Robotics and Vision, ICARCV 2018,
pages 1057–1062. IEEE, 2018.

[15] L. Oth, P. Furgale, L. Kneip, and R. Siegwart. Rolling shutter camera
calibration. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 1360–1367, 2013.

[16] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice. Automatic
Extrinsic Calibration of Vision and Lidar by Maximizing Mutual Infor-
mation. Journal of Field Robotics, 32(5):696–722, 8 2015.

[17] J. Persic, I. Markovic, and I. Petrovic. Extrinsic 6DoF calibration of
3D LiDAR and radar. 2017 European Conference on Mobile Robots,
ECMR 2017, 2017.

[18] B. Srinivasa Reddy and B. N. Chatterji. An FFT-based technique
for translation, rotation, and scale-invariant image registration. IEEE
Transactions on Image Processing, 5(8):1266–1271, 8 1996.

[19] Z. Taylor and J. Nieto. A mutual information approach to automatic
calibration of camera and lidar in natural environments. Australasian
Conference on Robotics and Automation, ACRA, (December), 2012.

[20] D. J. Yeong, G. Velasco-hernandez, J. Barry, and J. Walsh. Sensor and
sensor fusion technology in autonomous vehicles: A review. Sensors,
21(6):1–37, 2021.

[21] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1330–
1334, 2000.



APPENDIX A
EULER ANGLE PARAMETERIZATION

Another choice for interpretable rotation parameterization
are ZYX Euler angles (α, β, γ). In this case, the full repre-
sentation of the extrinsic transformations is (x, y, z, α, β, γ).

A. ZYX Euler Parameterization

Early experiments focused on using the ZYX Euler angle
parameterization. However, the general outputs for optimiza-
tion with ZYX Euler angles had mixed results. The ”Nelder-
Mead” method exhibited the greatest optimization stability,
whereas other optimizers often terminated at the provided
bounds. Figure 14 shows relative stability in the calibration
results for the y-axis (pitch) rotation of the calibration.

In contrast, the x-axis and z-axis rotations displayed sig-
nificantly greater amounts of variance in the optimization
parameters. This was especially apparent in the RGB frame
camera which typically exhibited higher variance than the
event camera calibration. Figure 15 shows the greater vari-
ations in the optimized parameters in the case of the RGB
frame camera.

This variance in the rotational angles arises due to the ill-
posed nature of the optimization problem when parameterized
with Euler angles in singular configurations. When we evaluate
the distance between the rotation parameters by finding the
rotational difference in their matrix forms, we see that each of
the optimized parameters are much closer than when inspect-
ing parameters separately. Figure 16 compares the angular
difference magnitude to a median result in the set of optimized
result, showing how although the variance in parameters is
high, the resulting solutions are similar.

While this indicates that the solutions are similar, it may
lead to potentially poor optimization stability due to the
redundancy of two parameters creating a ridge structure in
the optimization space. Figure 17 shows the ridge structure in
the optimization space when we look at the 2D slice of the
cost surface for Z and X rotations.

Fig. 14. Graphs showing y-axis (pitch) rotation optimization for both the
RGB and event cameras. Dashed line shows the seed value and the size of
the marker is proportional to the number of scenes used in the optimization.

Fig. 15. Graphs showing x-axis (roll) and z-axis (yaw) rotation optimization.
Dashed line shows the seed value and the size of the marker is proportional
to the number of scenes used in the optimization.

Fig. 16. Rotation difference to the median rotation result showcasing the
angular similarity between different optimized parameters.

Fig. 17. Ridge structure (valley in minimization) in the value function between
the Z and X rotation spaces.


